QUANDO VOCÊ ESTIVER DÚVIDA É SÓ FALAR! DEIXE A SUA DUVIDA NA PAGINA CONTACTOS OU NO ''>>DEIXE SEU RECADO AQUI
FIQUE POR DENTRO DA EQUAÇÃO DO 2° GRAU
Equação do 2º grau
Denomina-se equação do segundo grau, toda a equação do tipo ax²+bx+c, com coeficientes numéricos a.b e c com .
Exemplos:
Equação |
a |
b |
c |
x²+2x+1 |
1 |
2 |
1 |
5x-2x²-1 |
-2 |
5 |
-1 |
Classificação:
- Incompletas: Se um dos coeficientes ( b ou c ) for nulo, temos uma equação do 2º grau incompleta.
1º caso: b=0
Considere a equação do 2º grau imcompleta:
x²-9=0 » x²=9 » x= » x=
2º caso: c=0
Considere a equação do 2º grau imcompleta:
x²-9x=0 » Basta fatorar o fator comum x
x(x-9)=0 » x=0,9
3º caso: b=c=0
2x²=0 » x=0
Resolução de equações do 2º grau:
A resolução de equações do 2º grau incompletas já foi explicada acima, vamos agora resolver equações do 2º grau completas, ou seja, do tipo ax²+bx+c=0 com a, b e c diferentes de zero.
- Uma equação do 2º grau pode ter até 2 raízes reais, que podem ser determinadas pela fórmula de Bháskara.
Como Bháskara chegou até a fórmula de resolução de equações do 2º grau?
Considerando a equação: ax²+bx+c=0, vamos determinar a fórmula de Bháskara:
Multiplicamos os dois membros por 4a:
4a²x²+4abx+4ac=0
4a²x²+4abx=-4ac
Somamos b² aos dois membros:
4a²x²+4abx+b²=b²-4ac
Fatoramos o lado esquedo e chamamos de (delta)
b²-4ac:
(2ax+b)²=
2ax+b=
2ax=-b
Logo:
ou
Fórmula de Bháskara:
|
|
Utilizando a fórmula de Bháskara, vamos resolver alguns exercícios:
1) 3x²-7x+2=0
a=3, b=-7 e c=2
= (-7)²-4.3.2 = 49-24 = 25
Substituindo na fórmula:
=
e
Logo, o conjunto verdade ou solução da equação é:
2) -x²+4x-4=0
a=-1, b=4 e c=-4
= 4²-4.-1.-4 = 16-16 = 0
Sustituindo na fórmual de Bháskara:
» x=2
- Neste caso, tivemos uma equação do 2º grau com duas raízes reais e iguais. ( )
3) 5x²-6x+5=0
a=5 b=-6 c=5
= (-6)²-4.5.5 = 36-100 = -64
Note que <0 e="" n="" o="" existe="" raiz="" quadrada="" de="" um="" mero="" negativo="" assim="" a="" equa="" possui="" nenhuma="" real="" span="">
Logo: » vazio
Propriedades:
|
Duas raízes reais e diferentes |
|
Duas raízes reais e iguais |
|
Nenhuma raiz real |
Relações entre coeficientes e raízes
|
|
Vamos provar as relações descritas acima:
Dado a equação ax²+bx+c=0, com e , suas raízes são:
e
A soma das raízes será:
Logo, a soma das raízes de uma equação do 2º grau é dada por:
O produto das raízes será:
Logo, o produto das raízes de uma equação do 2º grau é dada por:
Podemos através da equação ax²+bx+c=0, dividir por a.
Obtendo:
Substituindo por e :
Obtendo a Soma e Produto de uma equação do 2º grau:
x² - Sx + P = 0 |
Exemplos:
1) Determine a soma e o produto das seguintes equações:
a) x² - 4x + 3=0
[Sol] Sendo a=1, b=-4 e c=3:
b) 2x² - 6x -8 =0
Sendo a=2, b=-6 e c=-8
c) 4-x² = 0
Sendo a=-1, b=0 e c=4:
Resolução de equações fracionárias do 2º grau:
Equações fracionárias são as que possuem incógnitas no denominador e o processo de resolução destas equações é o mesmo das equações não fracionárias.
Exemplos resolvidos:
a) Onde , pois senão anularia o denominador
[Sol] Encontrando o m.m.c dos denominadores: 2x
Então:
Eliminando os denominadores, pois eles são iguais:
»
Aplicando a fórmula de Bháskara:
Logo, x = 2 e x` = 4. » S={2,-4}
b ) e
[Sol] m.m.c dos denominadores: (x-1).(x+2)
Então:
Eliminando os denominadores:
» » »
* Note que a solução da equação deve ser diferente de 1 e 2 pois senão anularia o denominador, logo a solução da equação será somente:
x=-1 » S={-1}
Resolução de equações literais do 2º grau:
Equações literais são as que possuem uma ou mais letras além da incógnita.
Equação |
a |
b |
c |
x² - (m+n)x + p = 0 |
1 |
-(m+n) |
p |
Exemplo: Determine o valor da incógnita x.
1) x²-3ax+2a²=0
[Sol] Aplicando a fórmula de Bháskara:
a=1, b=-3a, c=2a²
, Logo:
x = 2a e x = a » S={a,2a}
Resolução de equações biquadradas
Equacão biquadrada como o próprio nome diz, são equações nas quais estão elevadas ao quadrado duas vezes, sua forma é:
onde |
Exemplo resolvido:
1)
Fazendo x² = y , temos
Substituindo os valores na equação, temos:
y² - 5y + 4 = 0
Aplicando Bháskara:
Logo, y = 4 e y`= 1
Voltando a variável x:
Como y=x², temos:
x²=4 » e x²=1 »
Então a solução será » S={-2,-1,1,2}
ou simplesmente
Agora ,equação BIQUADRADA
Uma equação biquadrada tem a seguinte forma:
Apesar dos expoentes altos, esse tipo de equação se resolve de modo relativamente simples.
Como resolver equações biquadradas
a. Ela é uma equação de 4º grau logo possui até 4 raízes;
b. Não possui expoentes ímpares.
Depois deve-se usar uma outra variável da seguinte forma:
E substituí-la na biquadrada, que fica assim:
Ou seja, aí temos uma equação de 2º grau, convencional.
Mas:
Logo:
Resolvendo a equação de segundo grau:
A equação ainda não está resolvida. Lembre-se de que o problema era para achar x, não y. Por isso, continuando:
Se então:
Para
Para
Logo as raízes são:
ax² + bx + c > 0;
ax² + bx + c < 0;
ax² + bx + c ≥ 0;
ax² + bx + c ≤ 0.
1. Igualar a sentença do 2° grau a zero;
2. Localizar e (se existir) as raízes da equação no eixo x.
3. Estudar o sinal da função correspondente, tendo-se como possibilidades:
a > 0 | a < 0 |
Exemplo 1: Resolva a inequação -x² + 4 ≥ 0.
Solução:
-x² + 4 = 0.
x² – 4 = 0.
x1 = 2
x2 = -2
AGRADECIMENTOS DOS SITES